物議を醸す READY STEADY TOKYO 自転車ロードレースの観戦エリア

いよいよ来週の日曜日7月21日に2020年東京オリンピックの自転車ロードレースのテストイベント READY STEADY TOKYO が開催されます。

自転車ファンにとってはとても楽しみなイベントであることは間違いない。公道を走るロードレスなので、(当たり前だが)交通規制は絶対に必要であり、下り坂などのスピードの出る場所などは観戦禁止エリアを設けることも当然であろう。しかしながら、ファンとしては見どころと思われる場所を含めてほぼ大部分*1が観戦禁止エリアに設定されており、SNSで失望、批判、落胆などの声が多数上がっている。私もその一人です。その辺りは以下の cyclist.sanspo.com の記事にまとまっています。

cyclist.sanspo.com

各地域の交通規制区間のリンクは以下の 記事にすべて掲載されています。

tokyo2020.org

現在、世界最大規模のグランツール Tour de France 開催中で、私も毎日JSportsで熱いレースを観ているのですが、ときには観客の人たちの自宅の近くがコースだったり、勝負どころの登り地点で観戦応援したり、子供たちも憧れの選手たちが走る姿を目に焼き付けたり、走る選手も大勢の観客も最高にテンションが上がる瞬間が毎日映像として届けられます。これこそがロードレースです。

ところが、今回のROAD STEADY TOKYO 自転車ロードレースでは、のきなみ観戦禁止エリアに設定されており、観客が誰もいないロードを世界から集まった選手が走ることになります。こらはもう違和感でしかありません。しかも今回はせっかくのテストということなのに中継も行われないらしい。先日の富士スピードウェイで行われた全日本選手権の放送を観た人はわかると思いますが、日本のカメラワークはお世辞にも良いとは言えません。であればもっとテストした方が良い気がします。

自転車ロードレースの魅力を伝えるという大きなミッションはほぼ達成されないことになるでしょう。大変残念でなりません。

今回の観戦禁止エリアの決定理由はとにかく安全第一に考えた結果だとのこと。なるほど、観客を寄せ付けなければリスクは減ることは間違いないでしょう。ただひたすらリスクとなる要素を少しでも減らしてとにかく安全第一にしたいのであれば、柵で囲まれた周回コースを100周走るようなコース設定がベストなのかもしれませんね。Tour de Franceのようなヘリからの空撮などは、もしヘリが墜落したら大変だということでもっての外なんでしょうかね...

では、日本で安全第一を優先した結果、なぜこのような結果になってしまったのでしょうか?恐らくこれにはさまざまな理由が考えられると思います。ここですべてを語ることは難しいですが、いくつか私が思いつくことを書いてみます。

自転車観戦慣れしていない

これはすぐに思いつくことでしょう。Japan CupやTour of Japanでは、これほどまでに観戦禁止エリアを設定いないのは、開催されている場所に普通の住宅街が多くなく、観客のほとんどが自転車ファンということもあり、ある程度観戦慣れしているのが大きいでしょう。Japan Cupでは毎年古賀志林道の九十九折の上り坂で沿道の大勢のファンが熱い声援を送っています。歩道なんてありませんが、もちろん観戦禁止エリアではありません。選手の息遣いが聞こえるほどの至近距離で観戦できます。これはロードレースの醍醐味のひとつですね。(下りは立入禁止になっています)

f:id:Blackcomb:20141019133312j:plain

2014年のJapan Cup。古賀志林道にて

    自己責任の考え方が薄い文化

    SNSなどで「日本は~」とか「日本人は~」とか日本人批判をときどき目にします。個人的には、そういった批評批判だけを書き残すのはあまり好きではないし、読んでいてもどこかいい気持になれないときもあります。ただ、今回の件の背景には、日本/日本人の自己責任の考え方の現れがあるのではないだろうかと思います。

    どういうことかと言いますと、何かリスクがあったり事故があったりすると、日本は運営側、管理側、主催者側などの責任となることが多いです。アメリカは(恐らく多くの他の国も)どちらかとうとそれは自己の責任だろうという考えが多い気がします。

    例えば、数年前に私がグランドサークルで断崖絶壁などが多い大自然満載の国立公園を巡ったときに見たことですが、断崖絶壁でそこから落ちたら絶対に死ぬだろうという場所がときどきあります。実際に年間数名は落ちて亡くなることがあるそうです。ぎりぎりまで行って足を滑らせて落ちてしまったら、国立公園の事務局とかそういうところの人たちが責任を問われるというわけではなく、それは自己責任なんです。

    では、日本ではどういうことになるか想像してみましょう。仮に足を滑らせて亡くなった人がいると、もしかすると公園の運営管理側の安全管理が問われるかもしれません。そこで、すぐに崖から落ちないように、地面に杭を打って柵を作ってしまうかも知れません。大自然に杭を打ったら自然に影響を与えてしまうし、景観も台無しになってしまうかも知れません。その部分を大切に考えて、自然に手を加えない考え方と、管理責任が問われるから安全のために自然やその他を犠牲にしてしまう考え方。どちらがいいとか悪いとかという議論をここでするつもりはありませんが、そういった自己責任や安全管理責任の所在などの日本の考え方の現われのひとつが、今回のこの「安全第一、観戦禁止」という決定に大きく関係している気がしています。

    f:id:Blackcomb:20140914071345j:plain

    写真は2014年にユタ州Bryce Canyonに行ったときのもの。実はかなり足がすくんでおりましたw

    さすがに1週間後なので、決断が大きく覆る可能性は極めて低いと思いますが、2020年の本番のときには日本も安全に配慮した自己責任に基づいてロードレースを観戦し、多くの人に自転車ロードレースの魅力とワールドツアーレベルの選手の走りの凄さをぜひ生で観れるようになって欲しいと切に願います。

    Tacx Neo Smart (後編)

    Tacx Neo Smart (前編) の続きです。

    いよいよバイクの設置です。前編でも書きましたが、私のフレームが142x12mmのスルーアクスルなので、標準で付属しているクイックリリースは使えません。できればスルーアクスル用のアダプター T2835も標準で付属してもらえるとありがたいです > Tacx さん

    このT2835なんですが、なんだかいろいろなアダプターが付いており何がなんだかよくわかりません。詳しい説明書が付属しているわけでもなく、パッケージに下のような図があるのみです。仕組みを理解している人にとってはこれで問題ないのでしょうが、私はそうではないのでこれを見ても何がなんだかよくわかりませんでした。試行錯誤した結果、写真のようなシャフト、クイック、アダプターなどの組み合わせで固定できることが判明しました。それ以外の2~3のパーツは私のフレームの場合は必要ありませんでした。

    しかし!私のフレーム(恐らくCanyonの多くのディスクブレーキのロードバク)は、スルーアクスルのドライブトレイン側の穴が塞がっているので、T2835の細いシャフトは固定できません。いろいろと悩んで試行錯誤したけど、これはどう考えても無理です。この蓋というかカバーで穴が塞がっている限りどうしようもなさそうです。

    この穴を塞いでいるカバーをよく見るとネジで固定されていそうです。これだ!と思い2.5mmアーレンキーでネジを緩めます。するとこの蓋が外れて穴が出てきました。この2.5mmボルトとカバーを外して、ディレーラーハンガーに先ほど外したボルトを使って直接固定します。つまり元々の状態との違いは、カバーが無くなっただけなので穴が貫通した状態になったわけです。

    これならなんとかなりそうだということで、バイクを Neo Smart に設置して、アダプターT2835を貫通させ、あとは通常のクイックリリースと同じ要領で固定させます。本当にこんなのでいいんだろうかという不安もありましたが、その後ローラーに乗って負荷をかけても外れたりすることはなかったので大丈夫そうです。

    ブレーキ側の方はというとブレーキキャリパーとNeo Smart本体とのクリアランスがギリギリです。あまりにもスペースに余裕がないので、設置するたびに本体を擦ってしまい、すでに傷が沢山付いてしまっています。この辺りもディスクブレーキのことをあまり考慮していない設計なのかなと思ってしまいます。ディスクブレーキキャリパーを本体に一度も擦ることなく設置するのは至難の業ではないでしょうか...

    何はともあれ無事設置できたので、早速乗ってみます。Zwift といいたいところですが、せっかく Tacx アプリのPremiumアカウントサービスが3か月分無料なのでそちらを試してみました。一番楽しそうなのは、バーチャルではなく実在する場所のビデオを見ながらローラーができるメニューでしょう。無料で利用できるコースは少ないのですが、3か月間は有料サービス向けのコースもすべてアクセスできるので、興味がわいたものからいくつかピックアップしてみました。

    1つ目はあのTour of Flandersのコースの一部を実際のプロのレースの先駆けて走るイベントコースの中からの抜粋。Kruisberu~Oude Kwaremont~Paterbergなどファンにとってはよだれもんの有名な石畳激坂のルートです。この映像と自分のペダリングや強度がシンクするのには思わず「おー、すげー!」と声が出てしまいます。坂道に入るとペダリングが重くなり、シフトダウンしないと登れませんし、石畳区間では、バイクがガタガタと振動するところも再現されます。逆にダウンヒルになると、ペダリングも軽くなりシフトアップしないと空転しますし、スピードに乗るとペダリングを止めてもホイールは回転し続け実走さながらです。テクノジーの進化に驚かされますね。これでスマートトレーナーの凄さを一気に思い知らされました。実際に私が走っているときの映像を少しだけキャプチャーしたものが以下の映像です。すごいですよね。


    Kruisberu ~ Oude Kwaremont ~ Paterberg


    Iseran - Val-d'Arc

    自宅の部屋に居ながらにしてヨーロッパの美しい街や山岳地帯を走れるなんて一昔前では考えられませんでした。正直高い機材ですが、感動させられました。もはやローラー台(というかスマートトレーナーという呼び方が正確)のメーカーはハイテクエンジニアリング集団でなければ淘汰されてしまう時代が訪れたのかも知れません。

     

    Tacx Neo Smart (前編)

    10連休もあるのでたまにはブログを書こうと思います。

    ブログでは書いていなかったのですが、実は去年の年末にスマートトレーナーをオンラインで購入しました。年末年始の休暇中に届いていろいろと遊ぼうと思っていたら、クレジットカードのトラブルなどで決済が降りず、かつ海外はクリスマスシーズンということでショップとの連絡もなかなかはかどらず、結局冬休み明けに届きました。

    昨年、ディスクブレーキのロードバイクに買い替えたので、クイックリリースからスルーアクスル方式に変わり、今まで使っていたローラー台が使えなくなってしまいました。そこで、色々と調べていたらスマートトレーナーがとても素晴らしいものに思えてきたのです。調べるとより高性能な物が欲しくなる(ろくなことにならないとも言えるが...)典型的な例ですね... (^^;

    f:id:Blackcomb:20190113202945j:plain f:id:Blackcomb:20190113202920j:plain

    メーカーで評判が良いのが Wahoo Kickr Smart Tacx Neo Smart のようです。いくつかYouTubeのビデオで実際の動作音が確認できるものがあるのですが、けんたさんのビデオ「【Wahoo vs Tacx】 最強のローラー台はどっちか比較してみた! - YouTube」を観るとWahooの方がは少し甲高い音がしますが、Shane Millerの「Wahoo KICKR 2018 vs Tacx NEO // Head to Head Sound Check - YouTube」だと低速域はNeo、高速域はKickrの方が騒音は小さいようです。どちらも十分に静かでトレーナーの音よりチェーンの音の方がはるかにうるさいです。

    www.youtube.com

    甲乙付け難いところですが迷った結果、Tacx Neo Smart に決定しました。パワー計測精度は2%未満の誤差なので、十分です。価格が安くてもあまり誤差のあるもの後々後悔しそううなので清水の舞台から飛び降りる気持ちで決めました。そしてStar Warsを連想させるあの未来的なフォルムもワクワクさせられます。

    f:id:Blackcomb:20190109213123j:plain

    年末は Wiggle でこの Tacx Neo Smart のセールを大々的に実施しており、実際にかなり安かったと思います。あれ以上安く買えるところはなかなかないだろうと思っていたら、ありました!BIKE-COMPONENTS.DE というドイツのショップです。Wiggle より2万円近く安かったと思います。ついでに、105 CS-5800 11-28T Tacx Rear Thru-Axle T2835 Adapter Set も同時購入しました。このスルーアクスルアダブターは142x12mmのスルーアクスル採用のフレームで Neo Smart を利用するときに必要なものです。私のフレームもリアが142x12mmのスルーアクスルなのでこれが必要になってきます。でもちょっとこのアダプターはちょっと高いな...

    年末頃は Tacx Neo 2 Smart という新モデルが発売されていたので、Neo Smart の価格もかなり下がってきており、タイミングとしては狙い目だったと思います。

    箱が届くとまずその大きさと重さに圧倒されます。本体重量は21.5kgです!

    同梱されているのは Neo Smart 本体、電源ケーブル類、スカイライナー(フロントホイールを置く台)、クイックリリース、説明書などです。スプロケットは別途準備する必要があります。それから Tacx のアプリで使用できるオンラインサービスの3か月無料クーポンコードも付いていました。アプリは、PCTacx Desktop App をインストールします。スマートフォン用のアプリは、Tacx utilityTacx Training などがあります。取りあえずこれらはすべてインストールしておきました。

    国内で購入すると問題ではないでしょうが、ドイツのショップで買ったので、当然日本の壁コンセントに合うような電源ケーブルは付属していません。変換アダプターは面倒なので、国内外で使える 100250V対応のメガネ型プラグの電源ケーブルを購入しました。これで問題なく使用できます。

    まず最初にスプロケットを取り付けます。特別なことはなく普通に装着するだけです。ピカピカのスプロケットが眩しいw

    f:id:Blackcomb:20190105211511j:plain

    バイクは設置せずにまずはお試しで電源ケーブルを接続します。そしてPCTacx Desktop Appを起動。認識しないなんてトラブルもなく、問題なく認識されて接続完了です。Tacx Desktop Appマニュアル によると Windows 10, Bluetooth 4.0 でのみ動作するようです(2019/5/3時点)。” Tacx Desktop application is not ANT+ compatible” とあるので、ANT+ではなくBluetoothで接続されます。私は最初てっきりANT+で接続するものとばかり思っていたので、アプリを見ても、本体のLEDを見てもANT+接続されないから何故だろうとかなり悩みましたが、単にBluetooth 4.0接続のみ対応だったようです。

     

    続く...

    初めての油圧式ディスクブレーキのブレーキパッド交換

    先週、朝バイクに乗っていたら、フロントブレーキでよくあるディスクブレーキの音鳴り、つまりローターがパッドに擦れてシュッシュッと音がする症状、が出たのでキャリパーを覗いてみると金属の戻りばねがずれている気がした。そこで、止まって指でその戻りばねのずれを適当に修正しようと思って押したら、何やらググっとずれてしまった。あれ?こんなに簡単にずれちゃっていいの?と思ったけど、そのまま走りだそうとしたら、案の定盛大に音鳴りが...

    バイクは Canyon Endurace CF SLX, ブレーキはSRAM Red 22 Road Hydraulic Disc Brakeです。

    もうシュッシュッと擦れるなんてものじゃなく、ブレーキがかかりっぱなしの状態に近いです。取りあえず脇に止めてトルクスT25でキャリパーの位置調整を試みたけど、どうにも手に負えない状態になってしまった。

    自宅から3~4kmの地点だったので、キーキーと盛大な音を響かせながら何とか帰宅。その後、腰を落ち着けてキャリパー位置を調整したけどまったく解消せず。これはよくあるローターが擦れる現象ではないなと思い、ブレーキパッドを外してみることに。

    なんせ去年の夏に購入してから一度もブレーキパッドを外したことがないし、油圧式ディスクブレーキの仕組みもさっぱりわかっていないから、少々不安だったけど一応取り外しは完了。

    見てみると、なんだかパッドが消耗しているように見える。新品のときの状態をよくわかっていないので、取りあえず見様見真似で頑張って取り付けようとするが、何度やってもうまくいかない。

    1つ目の原因はブレーキパッドの摩耗でした。それもかなりひどくて摩耗し過ぎて戻りばねの片方が折れてなくなっていました。

    市販されているものの写真を見ると戻りばねの形状はコの字だけど、私のものはL字。

    f:id:Blackcomb:20190414181911j:plain f:id:Blackcomb:20190409233922j:plain


    このL字でかつパッドがすり減ってなくなっているので、戻りばねのひっかかりがまったくなく、パッドでそっと挟むという状況になっていました。これだと何度やっても装着時にどうしても戻りばねがずれてしまう。最初はどんだけ職人技が必要なんだと唖然としたが、単にパッドが削れ過ぎていたのとばねが折れていたからでした... しかしよくこんな状態で乗ってたな... (滝汗)

    これはもうブレーキパッドを交換するしかないなということになり、平日ショップに行く時間はないので取り急ぎ amazon で注文。純正にしようかとも思ったけど、今回はコスパの良さそうな3rd party MicroOHERO の Hydraulic disc 用ブレーキパッド メタルパッドを購入。(当たり前ですが) しっかりパッドの山があるので戻りばねがしっかりかかり、ずれません。ブレーキパッドの装着も職人芸無しでできます。

    f:id:Blackcomb:20190413142717j:plain

    ところが、隙間がせまくてパッドが入りません。これはすぐにピンときました。よくあるピストンが出てきちゃっているという現象です。こんなこともあろうかと ParkTool ディスクブレーキ ピストンプレス PP-1.2 を買っておいたので、こいつの出番です。マイナスドライバーでもできなくはないのでしょうが、やはり専用工具は使いが手もよく安心ですね。この出てきたピストンを押し戻すのは思ったより力が必要でしたので、この工具はやはり重宝しました。

    f:id:Blackcomb:20190414184241j:plain

     後は、ローターがパッドと擦れないポイントを探して、T25でキャリパー位置を決めます。試走でセンター出しをして、ようやく乗れるレベルまで回復。異音もなし。純正の半額以下のブレーキパッドですが、10km程度乗った限りでは普通に使えます。耐久制度はこれからですね。ダンシングでバイクを左右に振るときにかすかに擦れる音がしますが、これはまた後日チェックするとしよう。

     

    機械学習と深層学習 ―C言語によるシミュレーション―

    機械学習と深層学習 ―C言語によるシミュレーション―」小高知宏 (著)。
    年末年始の休暇に読もうと思って買っておいた本。一応休み中に読了しましたので、備忘録として。
    AI (人工知能) がバズワードになっている昨今ですが、35年以上前に当時の通産省が ICOT (新世代コンピュータ開発機構) を設立して、莫大な予算*1を投じて第五世代コンピュータプロジェクトが行われたことを知る人は今はもうあまりいないかも知れません。当時、若かりし頃の私はこのプロジェクトに携わる機会があり、人工知能自然言語処理、並列推論マシンなどの研究開発をしていたことがあります。VAX11 や UNIXProlog を学んだ後に、PSI (Personal Sequential Interface Machine) という逐次推論マシンで動作する SIMPOS (SIM Programming and Operating System) というOSでESPというプログラミング言語を学びました。結局その言語知識は後にあまり役に立つことはなかったのですが、オブジェクト指向をこのときに学んだことで、以降のオブジェクト指向プログラミングを学習するときに大いに助けになったことは事実です。そしてその後、並列推論マシン PIM (Parallel Interface Machine) で動作する PIMOS という OS で KL1 という並列プログラミングを学び、知識ベース/事例ベースを活用した推論エンジンと並列処理などの研究も行っていました。
    世間的には成功とは言えなかったかも知れませんが、ここではその点について言及することは止めておきます。
    前置きが長くなりましたが、そのAIの中でもここ数年注目を浴びているのが機械学習 (Machine Learning) と深層学習 (Deep Learning) なるもので、それがどういったものなのか知らないのは良くないだろうということで先ず手にしたのが本書です。この手の本は沢山出版されているのでどれを読めばよいのか迷いますが、内容があまり薄っぺらそうなものは避けたいと思ったことと、プログラム例で紹介されているものが珍しくC言語で書かれていることがポイントでした。この分野では Python が圧倒的に多いのですが、C言語というのが懐かしさを覚えました。C言語のコードを読んだり書いたりすること自体があまりにも久しぶりすぎて、基本的なことも忘れており、思い出しながらの勉強となりました。サンプルプログラムはすべてダウンロードできるので楽ちんです。
    実行環境はリッチな Visual Studio ではなくあえてシンプルな MinGW をチョイス。MinGW (Minimalist GNU for Windows) は http://www.mingw.org/ からダウンロードできます。GNU とか gcc とか懐かしすぎるw
    前半は機械学習の基礎として、演繹的学習と帰納的学習を学べます。この辺の専門書は実は若いころ前述のプロジェクトで論文を書くために読んだことがあります。内容は殆ど覚えていませんけど... そして、教師あり学習から強化学習と進みます。Q-learning (強化学習の具体的方法) で適切な Q-value を獲得することが学習の目標などなど。Q値更新の式は、
    Q(s_{t}, a_{t})=Q(s_{t}, a_{t})+\alpha(r+\gamma maxQ(s_{t}+1, a_{t}+1)-Q(s_{t}, a_{t}))
    こういった数式をはてなダイアリーで記述する場合は、mimeTeX の機能を利用するので、このブログを書いている途中で mimeTeX の勉強に脱線しちゃいました...
    群知能と進化的手法では、粒子群最適化法や蟻コロニー最適化法を学びます。蟻ってすごいなぁ。ここでも強化学習のe-greedy方が採り入れられます。もうほぼ数学そのもの。だんだんと頭痛が... (笑)
    進化的手法では遺伝的アルゴリズム (Genetic Algorithm) を学べる。情報を染色体として表現するなど、基本アルゴリズムそのものの難しさもさることながら表現が新鮮。
    そしてニューラルネット。これもよく耳にしますがよくわかっていませんでした。人口ニューロンの構成を表現すると、次のようになるらしい。
    \large\displaystyle       u=\sum_{i}x_{i}w_{i}-v
    z=f(u)
    シグモイド関数 f(u)=\frac{1}{1+e^{-u}} は、バックプロバゲーションを利用する場合の伝達関数としてよく用いられます。階層型ニューラルネット、階層型ニューラルネットで広く用いられるバックプロバゲーション、バックプロバゲーションによるニューラルネットの学習あたりから難しくなって頭痛がしてきたw
    そして深層学習では、大規模ニューラルネットの問題と畳み込みニューラルネットについて説明されています。畳み込みニューラルネットDeep Learning でも割とポピュラーで画素認識の深層学習として良い方法として知られています。
    最後の方では、深層学習の少し実用的な例も挙げられ、バックプロバゲーションの計算手順(出力層の人口ニューロンが複数個の場合)が開設されています。ううむ頭痛が激しくなってきたw
    本書は個人的に慣れ親しんだC言語のサンプルがあったので、割と救われた気がしますがもろに数学なので、私にとっては決して簡単な内容ではありません。でもこれにめげず次は Python で書かれたサンプルコードで学べる Deep Learning の本を読もうと思います。

    *1:570億円だそうです...

    99%の人がしていないたった1%の仕事のコツ

    99%の人がしていないたった1%の仕事のコツ」河野 英太郎 (著)。
    3か月ぶりのブログ更新。元気で生きております (^^;;
    本書は仕事のコツがわかりやすく平易な言葉で説明されています。それぞれのTipsはほとんどが見開き2ページで完結するようにまとめられているので、ちょこちょこと読むのにも適していますね。個人的には新しい発見もいくつかありましたが、既知の内容も多く含まれていたのでもっと若いときに読んでおけばもっと役に立ったかなと感じました。でも読んでいると「あー、あるある。」といった内容が沢山あって、そこが身近に感じられてすぐに実践に移せるのはメリットです。
    冒頭で、気遣いや遠慮が過ぎると時間を棒に振ってしまい、マジメ度とパフォーマンスはある時点から比例せずに逆U字にあるとあります。こういったことって実は皆さんの周りにもよくある話ではないでしょうか。
    無意識に謙遜や言い訳の枕詞を習慣として使っていることもよくあります。これをポジティブな表現に変えることでプライミング効果を生み出し良い結果や反応が得られるというのは心理学的にも言えていますね。
    聞かれたことに答える -- これができていない人が実に多いです。Yes/Noの質問も5W1Hの質問も、ともすると雑音ともいえる周辺情報ではなく聞かれたことに最初に答えるようにすることは重要です。
    自分でもハッとしたのが「とりあえず」という表現。私もときどき使ってしまっています。居酒屋での「とりあえず生ビール」はまあいいとして、仕事では「とりあえず」の代わりにある表現を使えというtipsが書かれており、最近自分自身でも心掛けています。
    目的とゴールの違いを理解していない、或は意識していないケースもよく見かけます。今さら何をと言われるかもしれませんが、現状はそんなもんです。でもこの違いをきちんと使い分けると、仕事の設営にぐっと説得力が増してくるのは間違いないです。
    私が無知で知らなかったのですが、ドイツの心理学者、ヘルマン・エビングハウスが整理した忘却曲線は、仕事を効率よくしていく上でヒントになります。今後は私の物忘れが激しいのは忘却曲線によるものだと思ってくださいw

    記憶の忘却は、それがインプットされた瞬間から始まり、20分後に4割、1時間後には6割、一晩寝ると8割を忘れてしまう

    ちょっとニヤリとしてしまったのは、「英数字は半角を使用する」というTipsです。私も職業柄、英数字は必ず半角を使用していますが、たまにWebフォームで住所の番地も含めてすべて全角でなければはじかれることがあります。あれは憎悪感すら覚えます。(^^;;
    相手の感情を逆なでせず戦略的に話の腰を折るコツは、言われてみると別段特別なことではありませんが、これらがわざとらしくなく自然とできるようになりたいものです。
    すっかり定着したワークライフバランスという言葉。最近は働き方改革という言葉もよく耳にします。要は「仕事も私生活も充実させましょう」というコンセプトですが、「生活のために仕事をしすぎない」というニュアンスで語られがち。正しくは「私生活を犠牲にせず今以上にいい仕事をする」なんだなぁと改めて認識させてくれました。
    上記以外にもいくつか役に立った内容を列挙しておきます。興味があれば本を手に取ってみてください。

    • 悪い情報ほど先に報告
    • 会議の1/8の法則
    • アンチクライマックス
    • 聞き手側が会議をコントロール
    • KISSの原則
    • 神は細部に宿る
    • 「安易な和」は百害あって一利なし
    • 摩擦は進歩の母、積極の肥料

    Inagi Cross に参加。泥天国!

    9月30日に開催された初心者から中級者向けシクロクロスレース Inagi Cross にC4クラスで参加してきました。
    東京都稲城市に1年ちょっと前にオープンした Champion System が経営する Cross Coffee がことの始まりのようです。なんでも Champion System の社長が稲城市をえらく気に入ったらしく、本社も稲城市に移転したほど。会社概要をみると確かに稲城市矢野口になっており、よく見ると Cross Coffee のあるビルの2階が会社のようですね。
    そんな Champion System が稲城市に働きかけ、ようやく実現したのが記念すべき第1回 Inagi Cross というわけです。また、2020年の東京オリンピックのロードレースのコースに稲城市もかなり組み込まれています。自転車の街として発展していってくれることを期待したいです。
    シクロクロスレースは5年ぶりの出場で、その間もほぼ何も練習などしていないのでビリにならないように完走が目標です。レース前日は台風で大荒れ、当日の天気予報もがっつり雨の予報でしたので、90%の確率でDNSするつもりでした。前日の18:00にホームページでアナウンスがあり、9月30日は予定通り開催するとのこと。PEAKS, ツールド八ヶ岳赤城山ヒルクライムなど大きな大会が揃って開催中止をアナウンスしている中、シクロクロスレースのInagi Crossは開催の判断。さすがは全天候型競技シクロクロス
    当日朝起きてみると雨は降っているものの、かなりの小雨なので一応会場には自走で行ってみることに。そして会場に着くころには雨もほとんど止んでいました。DNSする理由がなくなってきた... (^^;;
    受付をしてゼッケンを受け取ると縁起のいい(?)13番!ロードレースだと13番は逆さまに付けるのが慣例だけど、シクロクロスではそんなことはしませんよね。
    試走の時間になったので、かなり混雑しているなかゆるゆると試走。台風の影響で大量の雨が降ったので、全面泥、泥、水たまり、泥という感じでシクロクロッサーならにやけてしまうだろうどろどろな路面が出来上がっておりました。ひよった私はたったの1周で試走を切り上げちゃいましたが。。
    皆さんが試走しているのをぼーっと眺めたりしているといよいよレースの時間です。順番にゼッケン番号が呼ばれると思いの外すぐに呼ばれ、なんと最前列!一応参加してみましたという私がこんなポジションを頂いてなんだか申し訳ない...

    スタート直後のストレートで4〜5人に抜かれ、かろうじて10位以内で最初のコーナー。コーナーリングが下手くそな上に体力も衰えているので、あっという間にはーはーぜーぜーと息が上がってしまう体たらく。こんな状態であと何周回もするのかと思うとかなり不安になってきました。泥でできたわだちでタイヤは取られるわ、何度もスリップするわ、前に進まないわで、息を抜くポイントがない!シケインとかもう許してーって感じで、2周目以降は乗り降りしたり担いだりする元気がなくなっていましたw

    幸い、一度もコケることもなく、メカトラを起こすこともなく、無事ゴールできました。でも速い人は速いですね。周回を重ねるたびに着々と順位を落としてしまい、結局出走30名中15位という残念な結果でした。ビリにならないという目標は一応達成w
    ゴール後にバイクを見ると、泥や草でフロントディレイラーが見えなくなってるし、カセットに草とかながい枝・つるが絡まっていたし、よくこんなんで回転していたなと驚きです。変速していたらばきっといっていたかもと思うとラッキーだったのかも知れません。


    泥コースで前に進むだけでも体力が奪われるコースでめっちゃしんどかったですが、「大人の泥んこ遊び」が楽しかったのは間違いない。参加したことにまったく悔いなしです。